
GEAR: GRAPH-ENHANCED AGENT FOR RETRIEVAL-AUGMENTED GENERATION

Zhili Shen[†] Chenxin Diao[†] Pavlos Vougiouklis[†] Pascual Merita[†]
 Shriram Piramanayagam Enting Chen Damien Graux Andre Melo
 Ruofei Lai Zeren Jiang Zhongyang Li Ye Qi Yang Ren Dandan Tu Jeff Z. Pan
 Huawei Poisson Lab, UK

<https://gear-rag.github.io>

Multi-hop QA Example

“In what year did Stephen Curry’s father join the team from which he started his college basketball career?”

- A base retriever cannot, by design, retrieve all necessary information in a single step
- Graph expansion enables retrieval of subsequent hops
- Guides the system toward the correct answer without using an LLM

A Walk-through

When did the location of the basilica which is named for the same saint that the Bremen Cathedral is named for become a country?

Offline Index Building Stage

For each passage $c_i \in \mathbf{C} = \{c_1, c_2, \dots, c_C\}$, an LLM extracts a triple set, such that each triple is uniquely linked to one single passage.

1. Base Retrieval

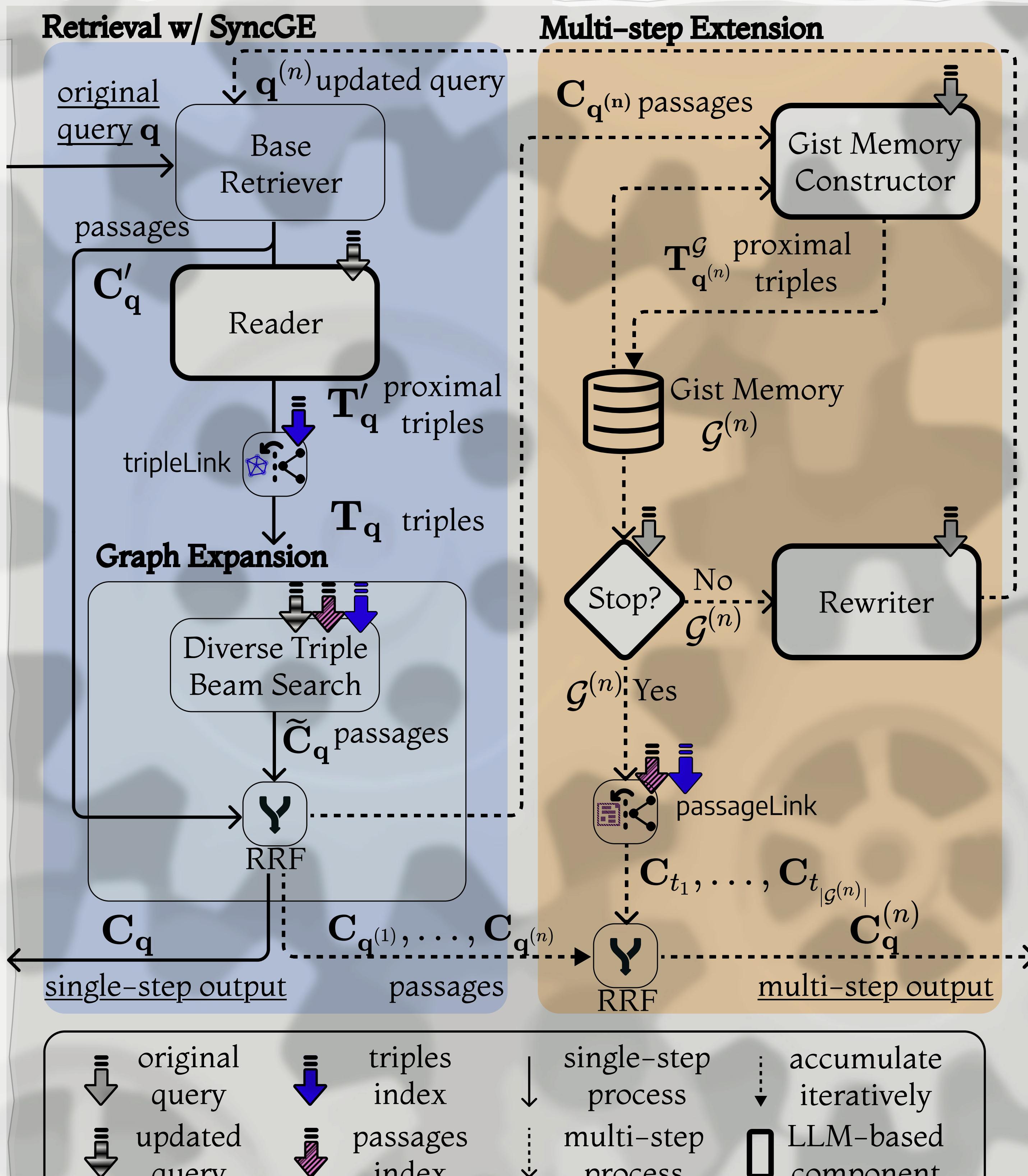
For a query \mathbf{q} , $\mathbf{C}'_{\mathbf{q}} = h_{\text{base}}^k(\mathbf{q}, \mathbf{C})$ is a list of passages given by the retriever, implemented as BM25, SBERT, or a mix of both.

\mathcal{T}_1 Bremen Cathedral \mathcal{T}_2 Münster Cathedral
 \mathcal{T}_3 Basilica of the Sacred Heart
 \mathcal{T}_4 Saint Justin's Church, Frankfurt-Höchst
 \mathcal{T}_5 Alatri Cathedral

2. Reader

An LLM reads $\mathbf{C}'_{\mathbf{q}}$ and summarises knowledge triples, outputting a collection $\mathbf{T}'_{\mathbf{q}}$ of triples: the *proximal triples*.

\mathcal{T}_1 (Bremen Cathedral, dedicated to, St. Peter)
 \mathcal{T}_2 (Alatri Cathedral, dedicated to, Saint Paul)
 \mathcal{T}_3 (Alatri Cathedral, co-cathedral of, Diocese Anagni-Alatri)
 \mathcal{T}_4 (Bremen, is located in, Germany)


3. tripleLink

Initial nodes $\mathbf{T}_{\mathbf{q}}$ for graph expansion are identified by linking each triple in $\mathbf{T}'_{\mathbf{q}}$ to a triple in \mathbf{T} , using the *tripleLink* function.

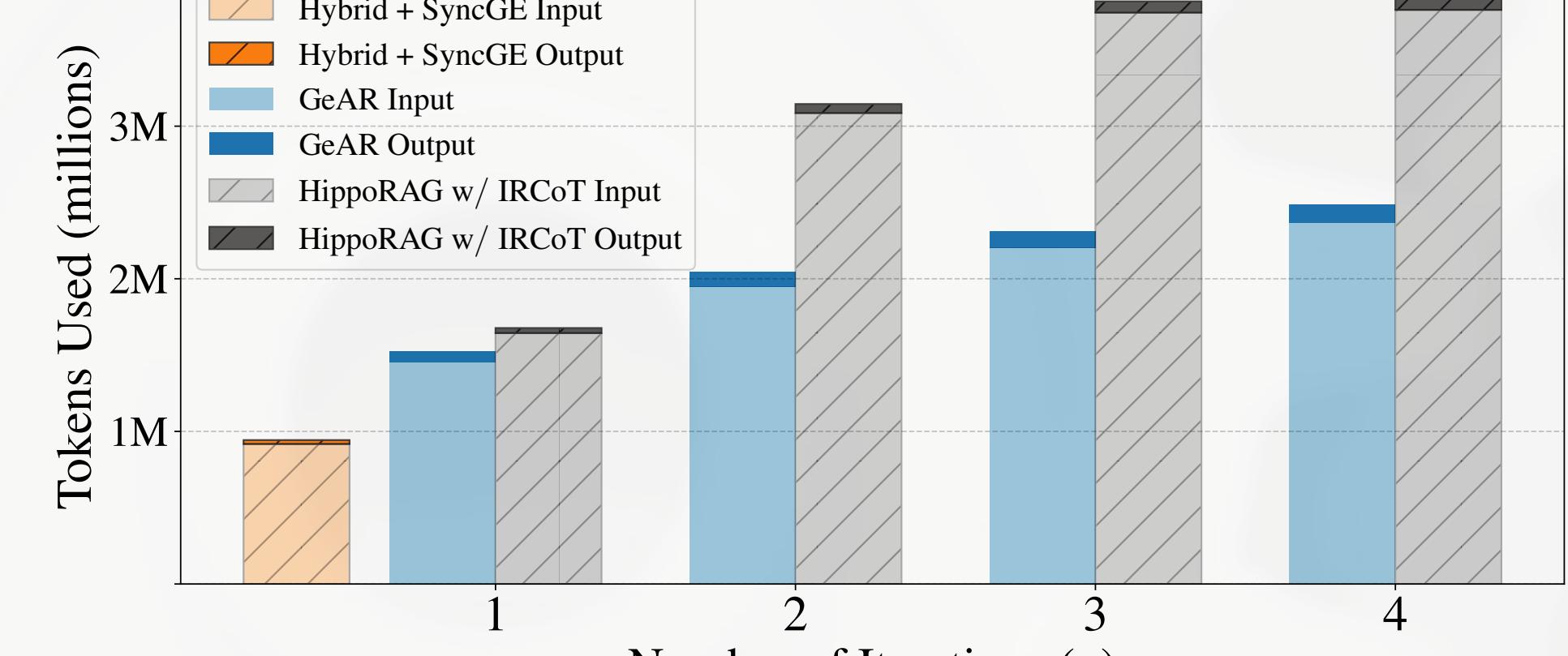
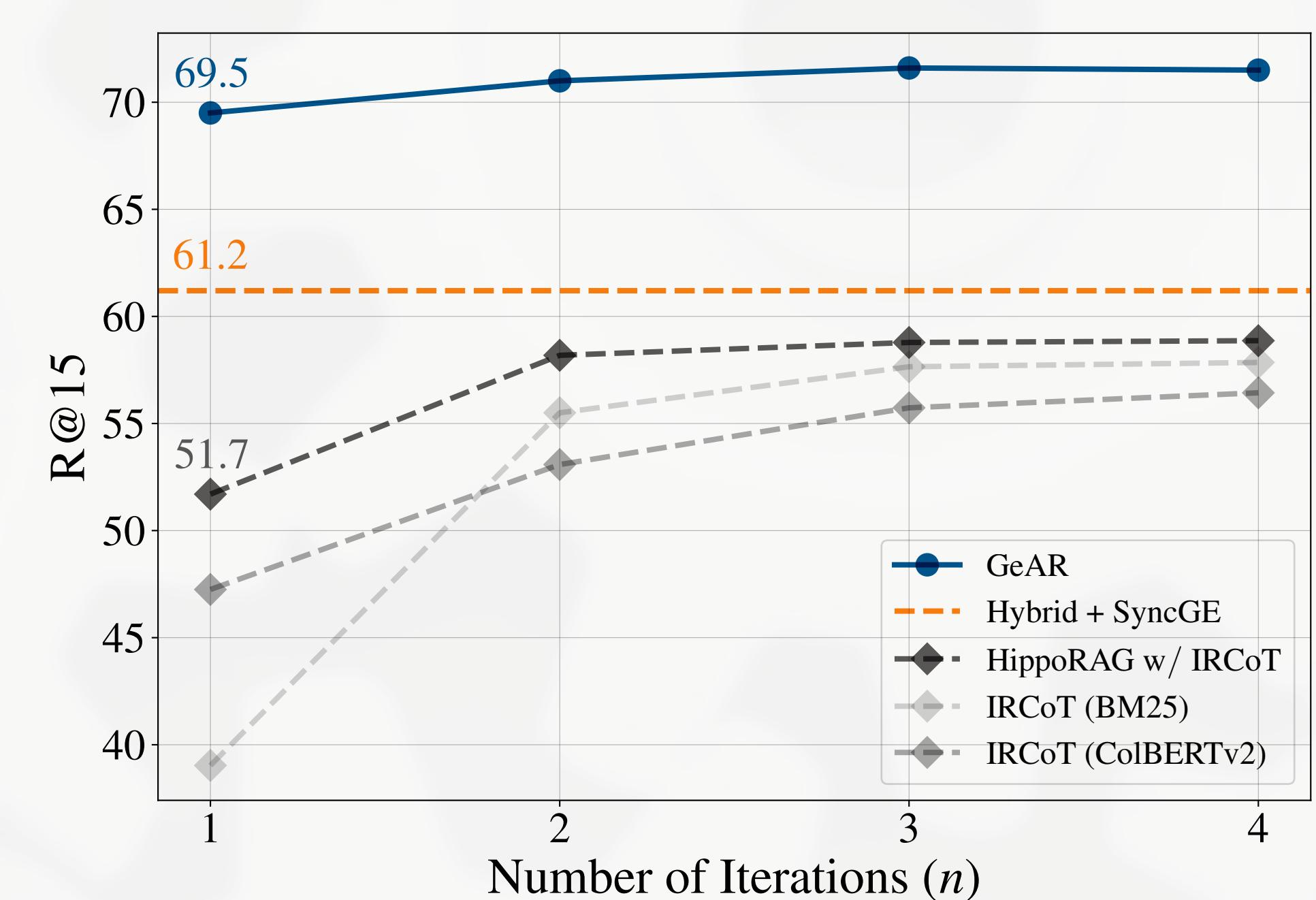
\mathcal{T}_1 (Bremen Cathedral, dedicated to, St. Peter)
 \mathcal{T}_2 (Alatri Cathedral, dedicated to, Saint Paul)
 \mathcal{T}_3 (Diocese of Macerata-Tolentino-Recanati-Cingoli-Treia, type, co-cathedral)
 \mathcal{T}_4 (Bremen, part of, Germany)

4. Graph Expansion

The primary component of graph expansion is *Diverse Triple Beam Search*. Here, we

Retriever	MuSiQue			2Wiki			HotpotQA		
	R@5	R@10	R@15	R@5	R@10	R@15	R@5	R@10	R@15
ColBERTv2	39.4	44.8	47.7	59.1	64.3	66.2	79.3	87.1	90.1
HippoRAG	41.0	47.0	51.4	75.1	83.2	86.4	79.8	89.0	92.4
BM25	33.8	38.5	41.3	59.5	62.7	64.1	74.2	83.6	86.3
+ NaiveGE	37.5	45.5	48.4	65.0	70.7	71.8	79.1	89.1	91.9
+ SyncGE	44.7	52.6	57.4	70.5	76.1	79.3	87.4	93.0	94.0
SBERT	31.1	37.9	41.6	41.2	48.1	51.5	72.1	79.3	84.0
+ NaiveGE	32.2	41.4	45.4	45.1	54.0	57.3	76.1	84.7	88.8
+ SyncGE	41.6	51.3	54.2	54.8	64.9	70.7	84.1	89.6	92.8
Hybrid	39.9	46.3	49.1	60.0	65.8	66.6	77.8	85.8	89.7
+ NaiveGE	41.8	49.4	53.0	63.0	70.8	72.6	80.6	89.4	92.7
+ SyncGE	48.7	57.7	61.2	72.6	80.9	82.4	87.4	93.3	95.2
IRCoT (BM25)	46.1	54.9	57.9	67.9	75.5	76.1	87.0	92.6	92.9
IRCoT (ColBERTv2)	47.9	54.3	56.4	60.3	86.6	69.7	86.9	92.5	92.8
HippoRAG w/ IRCoT	48.8	54.5	58.9	82.9	90.6	93.0	90.1	94.7	95.9
GEAR	58.4	67.6	71.5	89.1	95.3	95.9	93.4	96.8	97.3

Metric	Dataset	w/ Diversity	w/o Diversity
R@5	MuSiQue	48.7	47.0
	2Wiki	72.6	68.2
	HotpotQA	87.4	85.0
R@10	MuSiQue	57.7	53.9
	2Wiki	80.9	76.0
	HotpotQA	93.3	92.2
R@15	MuSiQue	61.2	58.4
	2Wiki	82.4	77.4
	HotpotQA	95.2	94.3



What makes GEAR work?

- [GE] Graph expansion on top of a base retriever
- [SyncGE] LLM for locating initial nodes for GE—synergistic behaviour between LLM and GE >> NaiveGE
- [Diversity Weights] Introducing diversity weight for triple beam search

Is GEAR efficient?

- GEAR requires fewer iterations than the competition to reach its maximum recall performance
- GEAR is more efficient in terms of LLM token utilisation
- Even for a single iteration, GEAR uses fewer tokens than HippoRAG w/ IRCoT, with substantially higher Recall@15

