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Introduction
• While GraphRAG approaches address complex QA scenarios, most of them rely on expensive LLM calls
• We propose GRiever: a lightweight, low-resource, multi-step graph-based retriever for multi-hop QA
• GRiever does not rely on LLMs and can perform multi-step retrieval within hundreds of milliseconds

Problem Setting
• Multi-step passage retrieval requires information from multiple passages to be combined to answer a

question
• Alignments between passages and triples extracted from these passages

– Triples represent atomic facts within their source passages
– These triples are organised into a graph bridging passages sharing common entities

• LLM-less, lightweight setting where results must be returned within 100− 500 ms

A Walk-through
Offline Indexing
GRiever uses three different indices: (i) passages: text passages with associated list of triples,
(ii) partial_triples: subject-predicate or predicate-object pairs and the list of complementing object
or subjects and passage ids, and (iii) same_as: entity synonyms index .

Online Multi-step Retriever
1. Relative Clause Splitting
The first part of the pipeline is a lightweight relative clause splitter based on relative clause connectors.

2. Passage Retrieval
Conditional Hybrid Retrieval: each base retrieval call within GRiever, the number of candidates that
will be considered by the dense retrieval is limited to the top-k ∗ c results of the sparse retriever.
Sub-graph Filtering: at subsequent iterations, a entities filter is added to ensure returned passages
contain triples with entities which can be joined with the previous iteration’s sub-graph.

3. Join Entities Synonym Expansion
In the context where the graph is formed by text triplets, the aforementioned subjects or objects filter
would miss cases where the join entity appears on different triples as different aliases. In order to address
such cases and improve coverage, we consider the same_as index in order to expand the sub-graph of the
joined entities with their synonyms.

4. Triples Shortlisting
The retrieved top-k passages may be connected to a large set of triples. As the retrieved top-k passages
may be connected to a large number of triples, the partial_triples is used to shortlist the triples
considered in the unsupervised tagger,since in the QA setting the whole triple is not expected to appear
within an input natural language query.

5. Heuristic-based Query Re-writing
The highest-scoring entities using the vector-based matcher, we attempt to rewrite the query from the
previous iteration by removing mentions of matched entities, along with relations from the shortlisted
triples when they are matched. If successful, we replace the identified mention in the query with the
remaining unmatched entity in the corresponding triples.

D1: [score=0.925]: The North Star (anti-slavery newspaper). The North Star was a nine-
teenth - century anti-slavery newspaper published from the Talman Building in Rochester, New York
by abolitionist Frederick Douglass. The paper commenced …

D2: [score=0.878]: Helen Pitts Douglass (1838–1903) was an American suffragist and abolitionist,
known for being the second wife of Frederick Douglass. She also created the Frederick Douglass Memorial
and Historical Association.
Associated Triple:
• {The North Star}-{published_by}-{Frederick Douglass}
• {Frederick Douglass}-{spouse}-{Helen Pitts Douglass}
[Q1] = “Who married the publisher of abolitionist newspaper The North Star?”
[Q2] = “Who married Fredrick Douglas?”
(The North Star)-[published_by]->(Frederick Douglass)-[spouse]->(Helen Pitts Douglass)

Figure: Example of an input query for GRiever.
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Figure: The architecture of GRiever.

Retriever R@5 R@10 R@15 ms@5 ms@10 ms@15
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BM25 0.351 0.41 0.442 23±5 25±6 27±6
Dense 0.319 0.383 0.420 294±12 292±11 292±11
RRFHybrid 0.394 0.472 0.505 295±11 295±10 294±10
Composed 0.417 0.492 0.533 135±8 134±7 168±13
GRiever 0.456 0.539 0.573 425±122 441±135 509±127
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BM25 0.64 0.668 0.68 38±15 44±16 48±17
Dense 0.467 0.515 0.539 467±24 467±24 472±23
RRFHybrid 0.64 0.673 0.685 469±24 472±25 475±24
Composed 0.624 0.662 0.677 159±22 229±26 297±29
GRiever 0.676 0.738 0.751 435±93 476±77 603±77
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BM25 0.668 0.82 0.887 18±3 21±3 24±3
Dense 0.728 0.799 0.842 61±3 61±3 62±3
RRFHybrid 0.776 0.879 0.917 63±3 61±3 63±3
Composed 0.784 0.886 0.919 76±5 96±8 115±7
GRiever 0.813 0.909 0.937 273±59 300±49 337±53

Table: Retrieval performance and runtime comparison.

Is GRiever efficient?
• GRiever does not require any LLM usage
• GRiever uses a lightweight vector-based entity matcher

for query rewriting
• GRiever leverages efficient indexing structure and filter-

ing to reduce latency
• GRiever has performance comparable to some agentic

Graph-RAG frameworks, whilst maintaining runtime sim-
ilar to dense base retriever on larger datasets

Setup
MuSiQue 2Wiki HotpotQA

R@5 R@10 R@15 R@5 R@10 R@15 R@5 R@10 R@15
w/ partial_triples 0.456 0.539 0.573 0.676 0.738 0.751 0.813 0.909 0.937
w/ full_triples 0.457 0.536 0.570 0.667 0.722 0.740 0.787 0.900 0.932
wo/ shortlisting 0.452 0.532 0.574 0.594 0.695 0.713 0.739 0.870 0.916
wo/ composed_retriever 0.438 0.514 0.555 0.672 0.733 0.731 0.792 0.887 0.920

Table: Ablation study across different index configurations

Retriever
MuSiQue 2Wiki HotpotQA
EM F1 EM F1 EM F1

BM25 18.4 27.6 42.4 47.7 43.8 57.2
Dense 15.2 25.4 23.6 28.4 42.1 55.0
RRFHybrid 20.0 30.2 43.8 48.0 45.4 58.5
Composed 19.0 29.5 43.8 47.7 43.3 57.1
GRiever 21.6 32.6 42.0 48.2 46.2 59.8

Table: End-to-end QA results.


